Challenges in Nanoscale Materials Synthesis, Integration and Applications

S. Tom Picraux Arizona State University Tempe, AZ

Single electron transistor

Examples of challenging areas of integration

Molecular Sensors

Hybrid Biodevices

Nanomanufacturing

Nanojunction Molecular Sensing

Fabricating Molecular Scale Nanojunctions

Top down nanoelectrode definition to 40 nm.

Self limiting electrochemical deposition to 4 nm.

Self assemble molecular wires & functionalize.

Deep UV lithography

Tao, ASU w/Motorola

Electrochemical deposition

Nanojunction Sensing with Polymer Nanowires

Au-polyaniline-Au nanojunction with Gly-Gly-His oligopeptide for sensing Cu²⁺

Integration of Nanostructures: Nanowires

Unseeded semiconductor nanowires

(various materials, much Si, few Ge)

Ge, sealed tube vapor transport, Au catalyzed

Y. Wu & P. Yang, Chem. Mater. <u>12</u>, 605 (2000)

Nano-heteroepitaxy

(mostly III-V, II-VI)

ZnO nanowires, Au catalyzed

M. Huang et al., Science 292, 1897 (2001)

How do we integrate synthesis with device platforms

VLS Ge nanopillars and nanowires on Si

Lower pressures—gas phase MBE nanopillars

Si (111) substrate, 580°C

Si (100) 600C

Heteroepitaxial growth of 1-D structures on Si

- Large lattice mismatch
- Low defects
- Quantum structures and arrays
- Nanowire sensors, photonic lattices, ...

Higher pressures—transition to nanowires 2 μ m length, highly catalytic => $\alpha \sim 0.5$

Si (111) 400C

Integration of Silicide Nanowires on Si

Silicide Nanowires for Nanoelectronics NIRT, 2003

DySi₂ nanowires with EBL-defined contacts (Jie-Feng Lin, J. Bird, P. Bennett – ASU)

Novel approaches to nanofabrication

Nano-imprinting/step-and-flash

JEOL JBX-6000FS/E EBL.

25 nm resolution; 60 nm overlay & stitching accuracy; 5 nm beam.

Nanonex NX1000
10nm features
High Throughput
(<1min)
3D features

Molecular Imprints S-FIL Sub-100 nm resolution 8" wafer capability Step and repeat process

Integration of Nano-bio Structures onto Surfaces

Photoactive Spiropyran Influences Charge, Polarity of Surface

Designer surfaces—photoswitchable hydrophobicity

Design of Tethered Spiropyran Surfaces

- Short-chain amine provides covalent amide link to spiropyran
- Tert-butyl biphenyl groups provide spaces to promote photo-reversibility.

Artificial Biological Power Plant

Integration of Soft-Hard Systems: Light-Powered Calcium Ion Pump

A Polyaniline Switch

Off: Insulator

On: Conductor

Conclusions: Switching in Tethered Spiropyrans

- 1) UV and visible lights open and close rings in tethered spiropyran.
- 2) In air, ring opening creates a more polar surface, with surface dipoles pointing toward the surface.
- 3) In water, ring opening creates positive surface sites due to protonation of phenoxide group in the open ring.
- 4) Switching of spiropyran provides a mechanism for manipulating double layer forces in microfluidic systems.

Measuring Single Molecule Conductivity

Resistance of 1 molecule = 900 megohms Resistance of nonbonded contact >9 X 10⁶ megohms

X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay

Science 2001, 294, 571-574

Probing (Bio)Molecular Interactions by Interface Force Microscopy

Example: Spiropyran surface ←→ silica probe in high dielectric liquid

Nanoscale measurement of optical switching of molecular surface state

Concept: Directly probe (bio)molecular interactions between tip and surface